AUV Expanding the Dynamic of Geophysical Survey

Fugro Survey Pte Ltd
Kelvin Chow 周杰贤

September 2013
Introduction of Advantages of AUV

Improved Application of AUV through Example Projects

Issues and Improvement of Existing Payload System

AUV Survey for Unconventional Application
Deep Water Challenges
Geophysical Survey

SURFACE - TOW SPARKER DATA

Deep- TOW Chirp Profiling DATA
Deep Water Challenges
Geophysical Survey

Complicated survey operation
Sub-sea positioning issues
Slow and Costly Production

Deep Water Challenges
Geophysical Survey

Complicated survey operation
Sub-sea positioning issues
Slow and Costly Production
AUV Survey Advantage:
Non-linear Survey Pattern

SIDE-SCAN SONAR MOSAIC
AND WATER-DEPTH MAP
FROM AUV CIRCULAR SURVEY
AUV Survey
Consistently Good Quality Data

Key Success Factor to AUV Survey:

• Extremely quite and stable platform – Data Quality Assurance
• Advance Positioning System - Reliable and Accurate
• Free swimming – Highly Flexibility and Time Saving
AUV Data - Detail Engineering Quality

Hull Mounted Multibeam

AUV Multibeam Data
AUV: Not the Best Deep Water Survey Approach

Only Starting;
Getting Better
Challenges:

• Going through a major seabed through, 3,000m maximum water depth
• Steep & complex slopes between 150m – 1,000m; and 2,000m to 3,000m
• Sediment movement along slopes is evident
• Limited data available for potential route selection
Regional Hull Mounted Multibeam Echo Sounder Survey:

- Multiple survey campaign using different sounding equipment (for different depth ranges)
- Multiple data sets of different quality, accuracy and resolution

=> Multiple routes were proposed based solely on seabed topography
=> Slope stability evaluated from potential sediment flow patterns
Project Example A: Phase 2 AUV Surveys

- **Multiple AUV Survey Passes:**
 - **Exploratory AUV survey** – wide survey corridor, high altitude AUV survey (5m bin) => Route selection and improvement
 - **Detail AUV survey** – reduced corridor, low altitude AUV survey (1m bin) => Route finalised with engineering quality data for design
 - **AUV imaging survey** – still photograph at 3-5m altitude
AUV depth 1085m; Altitude 3.0m
Project Example A: Phase 3 Add-on Surveys

Additional / Supporting Surveys:
• Gravity coring locations based on AUV results
 => Detail stratigraphic analysis & age dating carried out
• Hi-resolution 2D seismic surveys
 => Design along potential faulting areas
Effective & Efficient Used of AUV:
- AUV survey designed for specific purpose & objectives
- Providing results and information that were hard to achieve from a single survey campaign

AUV changes the Dynamic of Geophysical Survey
Project Example B: AUV Micro-3D Survey

Challenges:

- Planning of suction anchors within an area where gas seepages and minor fault systems are evident
- Detail mapping of faults, plus any hidden sub-seabed issues are required for planning and design
- 1,000m water depths
Project Example B: AUV Micro-3D Survey

- A micro 3D Sub-bottom Profiling Survey were performed

Anchor locations
AUV 3Dm Micro Subbottom Survey

- Ultra subbottom density for postage stamp size areas 390 x 500m
- **50 times more subbottom data density** @ 4 meter line spacing
- Includes SGY 3D cube final product
- Line spacing 2 – 4m; at 20m above seafloor
- 16 hours survey time @ 4 knots speed

Benefits sub-seabed piles, suction anchors & drilling locations by providing **exponential level of sub-bottom detail**
AUV 3Dm Micro Chair-cut Result

Bin size 0.5m x 4m
AUV 3Dm Micro Cross Section Profile

- Each **movie frame** is one subbottom line profile at 4 meter line spacing

OTC 23950

AUV3Dm: Detailed Characterization of Shallow Soil Strata and Geohazards Using AUV Subbottom Profiler 3-D Micro Volumes

AUV 3D micro surveys

- Example application (ref. George and Cauquil, 2007)

 Detailed pockmark investigation offshore Nigeria
 - Combined close spaced AUV data with 3D seismic data
 - Used to evaluate the development process of pockmarks

Detailed pockmark investigation offshore Nigeria

- Combined close spaced AUV data with 3D seismic data
- Used to evaluate the development process of pockmarks
AUV 3D micro survey – Applications

At least 17 deep water AUV3Dm surveys known to have successfully completed to date; some of the objectives achieved include:

1. Characterize or avoid fault planes in production - facility foundation zones;
2. Characterize fluid vents (pock marks and mud volcanoes) and gassy zones;
3. Detect boulders; and
4. AUV3Dm time-lapse (4-D) surveys to detect changes at a fluid-vent site.
Stevenson and others, as early as 2002 suggested AUV would provide a **stable platform** for 3D micro survey.

However successful program depends on very high positional accuracy – **details matter, a lot!**

1. **Navigation** of the AUV to maintain straight track-lines and uniform track-line spacing;
2. **Accurate positioning** of the AUV/SBP transducer;
3. **Survey-line plan** (shooting sequence and direction);
4. **Tidal (depth) and atmospheric (pressure) changes** to correct for variations in AUV height above seabed;
5. **Migration of data** during 3-D seismic processing
Barometric Compensation

- Digitally log barometric surface pressure & apply to each MBE & SBP ping
- **Benefit is a better quality seabed terrain & sub-bottom profiles**
- 15cm of relative depth error is large
- Critical for AUV3Dm project
- Routine application for all AUV survey
Improved AUV Depth Calculations

- Hardware and software upgrade
- More responsive in dynamic seafloor areas
- Higher quality multibeam data
- Higher quality subbottom data
- Clearer micro 3D subbottom images & cubes
- In service as of Q1, 2013
High Resolution Satellite Tides

- Calculated on site – not interpolate or extrapolate from other tide station
- Based on TPX07 Oregon State University and regional models
- Recently applied to Fugro’s AUV Micro 3D survey with 10cm relative results
- **Benefits** multibeam & subbottom data quality for open ocean surveys
- Extensive comparison studies have been completed in many regions including **North America**, South America & Africa.
Existing AUV Payloads

Issues & Improvements
AUV Sub-Bottom Profiling Issues

Questionable Chirp SBP performance & penetration

Seabed ➔

Old SBP Technology

StarPulse Technology

• Improved data acquisition algorithm
• Increase pulse length & lowering center frequency
• Increase penetration and retain resolution

Seabed ➔

StarPulse Technology

Optional to combine with Sub-bottom Multi Pulse (SMP)
Sub-bottom Multi Pulse (SMP)

- **Two different frequency pulses** are transmitted in an alternating pattern
- Higher resolution data in the shallow sub-bottom section (up to 16 kHz) - **benefits pipeline route surveys**
- Deeper penetration with lower frequency (2 kHz) - **benefits sub-seabed piles and suction anchors**
 - Trade off is less pings in long-track axis for any given frequency
- Multi ping is a excellent trade off, because data is normally overly dense in long-track direction
- Delivered in two standard SGY files
Multi Pulse Data Example

• 2 frequency data acquired at the same time during an AUV survey
• Low frequency – deep penetration 40% more (top)
• High frequency – high resolution (bottom)
• Vertical Scale in milliseconds

Seabed

Seabed
Towed AUV Mini Streamer – Future Development

• 15 - 40 channel streamer
• Deep penetration to supplement geotechnical coring results
• Resolve seabed variability
• Potentially determine porosity, density, S-wave and P-wave
Synthetic Aperture Sonar (SAS) sub-bottom profiling

- Taking the advantage of AUV being a stable platform
- Combines many acoustic pings to form an subsea image
- Several times higher long-track resolution from seabed down to 5 meters
- Compliments gravity coring information
- Benefits pipeline routes and other seafloor infrastructure type surveys
- Sea-trial in Q4, 2013
Mapping Water Column Anomalies

- Achieved through Enhanced Water Column (EWC)
- Use sidescan SONAR water column data to detect gas bubbles
- Showing gas seepage in direct relation to sub-bottom profiling section
- Strengthens both sidescan & subbottom data sets for interpretation
- Have seen bubbles up to 2900 meters water depth
- R&D with hardware vendor to further enhance detection method
Enhanced Water Column (EWC) Final Product

Water Column Anomaly

Water Column from Sidescan Sonar

500 ft

~25 ft
Upgrade AUV Sidescan Sonar Frequencies

AUV, a **stable platform** enabling the upgrades, and future developments!

- **120 kHz (current)**
- **410 kHz (current)**
- **240 kHz (upgrade)**
- **540 kHz (upgrade)**
- **1600 kHz (upgrade)**

Investigation purposes
Low altitude only

100 x 20 meters
AUV Environmental Datasets

- Value added information extracted from existing sensors being part of AUV navigation system
- Water temperature, conductivity (CTD sensor) and corrected current profile (ADCP) at AUV altitude
- Valuable early information for sub-sea work plan & designing application

Water Temperature Gradient Map

ADCP Current Vector Stick Horizontal Chart
AUV Survey for Unconventional Application
AUV Magnetometer – UXO Survey

- Doubling of altitude decrease magnetic signal strength by a factor of eight
- Very low altitude (around 5 meters) will be required to detect UXO type objects
- High quality positioning (<2 meters grid line spacing) is a must for small UXO surveys

=> AUV providing an ideal platform

- Magneotmeter should be small enough to integrate on AUV
- AUV must record propulsion & rudder control amperage draw for use during post processing.
- Sensor calibration should be conducted at an AUV high altitude in a gradient free area. Suitable locations to be located via Fugro Airborne data.
- Potential application for sub-sea mining, debris survey, pipeline & cable detection in deep water
Micro-Gravimeter on AUV

- Very detailed high accuracy measurement for microgravity investigation
- Specific interest from deep ocean mining application
- Potential application for deep sea oil and gas exploration – shallow targets identification

- AUV is considered a promising platform
 - high accurate and reliable position and height of sensor
 - High resolution multibeam data of seabed topography
AUV for IRM Survey

- Acoustic inspection by side scan sonar, two options:
 - Conventional high frequency SSS (300/600/1600kHz) arrays:
 - 600kHz resolution Cross track 1.5cm, along track 15cm @ 25m range;
 - Or
 - SAS (Synthetic Aperture Sonar) Resolution 5 x 5cm
AUV for IRM Survey

- Optical inspection by digital stills:
 - Camera plus LED lamp;
 - Overlapping tiles to form mosaic.

Data from TileCam still image camera

Altitude 4.6 m
Resolution 2.3x2.3 mm

Recorded Wednesday

Recorded yesterday
The Platform Inspection mission profile involves successive passes around the platform at a 15m standoff, with 50% overlap of 3D sonar scans between passes.
Platform Inspection Data Deliverables
Summary

• AUV offers a stable and reliable platforms that expands the dynamic of geophysical survey
• New and innovative applications are being introduced, and explored
• Revolution in the survey industry is anticipated
Thank you!!

Kelvin Chow 周杰贤
Fugro Survey Pte Ltd

kchow@fugro.com.my